Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.625
Filtrar
1.
Cell Mol Life Sci ; 81(1): 180, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613672

RESUMEN

Aberrant remodeling of uterine spiral arteries (SPA) is strongly associated with the pathogenesis of early-onset preeclampsia (EOPE). However, the complexities of SPA transformation remain inadequately understood. We conducted a single-cell RNA sequencing analysis of whole placental tissues derived from patients with EOPE and their corresponding controls, identified DAB2 as a key gene of interest and explored the mechanism underlying the communication between Extravillous trophoblast cells (EVTs) and decidual vascular smooth muscle cells (dVSMC) through cell models and a placenta-decidua coculture (PDC) model in vitro. DAB2 enhanced the motility and viability of HTR-8/SVneo cells. After exposure to conditioned medium (CM) from HTR-8/SVneoshNC cells, hVSMCs exhibited a rounded morphology, indicative of dedifferentiation, while CM-HTR-8/SVneoshDAB2 cells displayed a spindle-like morphology. Furthermore, the PDC model demonstrated that CM-HTR-8/SVneoshDAB2 was less conducive to vascular remodeling. Further in-depth mechanistic investigations revealed that C-X-C motif chemokine ligand 8 (CXCL8, also known as IL8) is a pivotal regulator governing the dedifferentiation of dVSMC. DAB2 expression in EVTs is critical for orchestrating the phenotypic transition and motility of dVSMC. These processes may be intricately linked to the CXCL8/PI3K/AKT pathway, underscoring its central role in intricate SPA remodeling.


Asunto(s)
Eosina Amarillenta-(YS)/análogos & derivados , Interleucina-8 , Fosfatidiletanolaminas , Preeclampsia , Embarazo , Humanos , Femenino , Interleucina-8/genética , Fosfatidilinositol 3-Quinasas , Preeclampsia/genética , Placenta , Arterias , Medios de Cultivo Condicionados , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis
2.
J Zhejiang Univ Sci B ; 25(4): 280-292, 2024 Apr 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38584091

RESUMEN

Cells within tissues are subject to various mechanical forces, including hydrostatic pressure, shear stress, compression, and tension. These mechanical stimuli can be converted into biochemical signals through mechanoreceptors or cytoskeleton-dependent response processes, shaping the microenvironment and maintaining cellular physiological balance. Several studies have demonstrated the roles of Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) as mechanotransducers, exerting dynamic influence on cellular phenotypes including differentiation and disease pathogenesis. This regulatory function entails the involvement of the cytoskeleton, nucleoskeleton, integrin, focal adhesions (FAs), and the integration of multiple signaling pathways, including extracellular signal-regulated kinase (ERK), wingless/integrated (WNT), and Hippo signaling. Furthermore, emerging evidence substantiates the implication of long non-coding RNAs (lncRNAs) as mechanosensitive molecules in cellular mechanotransduction. In this review, we discuss the mechanisms through which YAP/TAZ and lncRNAs serve as effectors in responding to mechanical stimuli. Additionally, we summarize and elaborate on the crucial signal molecules involved in mechanotransduction.


Asunto(s)
Mecanotransducción Celular , ARN Largo no Codificante , Mecanotransducción Celular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Vía de Señalización Hippo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612468

RESUMEN

This review investigates the multifaceted role of the p66Shc adaptor protein and the gut microbiota in regulating mitochondrial function and oxidative stress, and their collective impact on the pathogenesis of chronic diseases. The study delves into the molecular mechanisms by which p66Shc influences cellular stress responses through Rac1 activation, Forkhead-type transcription factors inactivation, and mitochondria-mediated apoptosis, alongside modulatory effects of gut microbiota-derived metabolites and endotoxins. Employing an integrative approach, the review synthesizes findings from a broad array of studies, including molecular biology techniques and analyses of microbial metabolites' impacts on host cellular pathways. The results underscore a complex interplay between microbial metabolites, p66Shc activation, and mitochondrial dysfunction, highlighting the significance of the gut microbiome in influencing disease outcomes through oxidative stress pathways. Conclusively, the review posits that targeting the gut microbiota-p66Shc-mitochondrial axis could offer novel therapeutic strategies for mitigating the development and progression of metabolic diseases. This underscores the potential of dietary interventions and microbiota modulation in managing oxidative stress and inflammation, pivotal factors in chronic disease etiology.


Asunto(s)
Enfermedades Metabólicas , Humanos , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteínas Adaptadoras Transductoras de Señales , Factores de Transcripción Forkhead , Mitocondrias
4.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612827

RESUMEN

The signaling lymphocytic activation molecule (SLAM) receptor family (SLAMF) consists of nine glycoproteins that belong to the CD2 superfamily of immunoglobulin (Ig) domain-containing molecules. SLAMF receptors modulate the differentiation and activation of a wide range of immune cells. Individual SLAMF receptors are expressed on the surface of hematopoietic stem cells, hematopoietic progenitor cells, B cells, T cells, NK cells, NKT cells, monocytes, macrophages, dendritic cells, neutrophils, and platelets. The expression of SLAMF receptors was studied during normal B cell maturation. Several SLAMF receptors were also detected in cancer cell lines of B-lymphoid origin and in pathological B cells from patients with B cell chronic lymphoproliferative disorders (B-CLPD), the most frequent hematological malignancies in adults. This review summarizes current knowledge on the expression of SLAMF receptors and their adaptor proteins SAP and EAT-2 in B-CLPD. Several SLAMF receptors could be regarded as potential diagnostic and differential diagnostic markers, prognostic factors, and targets for the development of novel drugs for patients with B-CLPD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Trastornos Linfoproliferativos , Adulto , Humanos , Linfocitos B , Plaquetas , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Trastornos Linfoproliferativos/genética
5.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38612910

RESUMEN

Glioblastoma is the most common malignant primary tumor of the CNS. The prognosis is dismal, with a median survival of 15 months. Surgical treatment followed by adjuvant therapies such as radiotherapy and chemotherapy characterize the classical strategy. The WNT pathway plays a key role in cellular proliferation, differentiation, and invasion. The DKK3 protein, capable of acting as a tumor suppressor, also appears to be able to modulate the WNT pathway. We performed, in a series of 40 patients, immunohistochemical and Western blot evaluations of DKK3 to better understand how the expression of this protein can influence clinical behavior. We used a statistical analysis, with correlations between the expression of DKK3 and overall survival, age, sex, Ki-67, p53, and MGMT and IDH status. We also correlated our data with information included in the cBioPortal database. In our analyses, DKK3 expression, in both immunohistochemistry and Western blot analyses, was reduced or absent in many cases, showing downregulation. To date, no clinical study exists in the literature that reports a potential correlation between IDH and MGMT status and the WNT pathway through the expression of DKK3. Modulation of this pathway through the expression of DKK3 could represent a new tailored therapeutic strategy in the treatment of glioblastoma.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Western Blotting , Proliferación Celular , Terapia Combinada , Bases de Datos Factuales , Proteínas Adaptadoras Transductoras de Señales
6.
Scand J Immunol ; 99(5): e13358, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605535

RESUMEN

Adapter proteins are flexible and dynamic modulators of cellular signalling that are important for immune cell function. One of these, the T-cell-specific adapter protein (TSAd), interacts with the non-receptor tyrosine kinases Src and Lck of the Src family kinases (SFKs) and Itk of the Tec family kinases (TFKs). Three tyrosine residues in the TSAd C-terminus are phosphorylated by Lck and serve as docking sites for the Src homology 2 (SH2) domains of Src and Lck. The TSAd proline-rich region (PRR) binds to the Src homology 3 (SH3) domains found in Lck, Src and Itk. Despite known interactors, the role TSAd plays in cellular signalling remains largely unknown. TSAd's ability to bind both SFKs and TFKs may point to its function as a general scaffold for both kinase families. Using GST-pulldown as well as peptide array experiments, we found that both the SH2 and SH3 domains of the SFKs Fyn and Hck, as well as the TFKs Tec and Txk, interact with TSAd. This contrasts with Itk, which interacts with TSAd only through its SH3 domain. Although our analysis showed that TSAd is both co-expressed and may interact with Fyn, we were unable to co-precipitate Fyn with TSAd from Jurkat cells, as detected by Western blotting and affinity purification mass spectrometry. This may suggest that TSAd-Fyn interaction in intact cells may be limited by other factors, such as the subcellular localization of the two molecules or the co-expression of competing binding partners.


Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Dominios Homologos src , Humanos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Células Jurkat , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Tirosina/metabolismo , Unión Proteica , Familia-src Quinasas/metabolismo
7.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38607370

RESUMEN

Cytokine release syndrome (CRS) is a frequently observed side effect of chimeric antigen receptor (CAR)-T cell therapy. Here, we report self-regulating T cells that reduce CRS severity by secreting inhibitors of cytokines associated with CRS. With a humanized NSG-SGM3 mouse model, we show reduced CRS-related toxicity in mice treated with CAR-T cells secreting tocilizumab-derived single-chain variable fragment (Toci), yielding a safety profile superior to that of single-dose systemic tocilizumab administration. Unexpectedly, Toci-secreting CD19 CAR-T cells exhibit superior in vivo antitumor efficacy compared with conventional CD19 CAR-T cells. scRNA-seq analysis of immune cells recovered from tumor-bearing humanized mice revealed treatment with Toci-secreting CD19 CAR-T cells enriches for cytotoxic T cells while retaining memory T-cell phenotype, suggesting Toci secretion not only reduces toxicity but also significantly alters the overall T-cell composition. This approach of engineering T cells to self-regulate inflammatory cytokine production is a clinically compatible strategy with the potential to simultaneously enhance safety and efficacy of CAR-T cell therapy for cancer.


Asunto(s)
Síndrome de Liberación de Citoquinas , Citocinas , Animales , Ratones , Síndrome de Liberación de Citoquinas/etiología , Proteínas Adaptadoras Transductoras de Señales , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos
8.
Nat Genet ; 56(4): 579-584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575728

RESUMEN

Obesity is a major risk factor for many common diseases and has a substantial heritable component. To identify new genetic determinants, we performed exome-sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We identified rare loss-of-function variants in two genes (BSN and APBA1) with effects substantially larger than those of well-established obesity genes such as MC4R. In contrast to most other obesity-related genes, rare variants in BSN and APBA1 were not associated with normal variation in childhood adiposity. Furthermore, BSN protein-truncating variants (PTVs) magnified the influence of common genetic variants associated with BMI, with a common variant polygenic score exhibiting an effect twice as large in BSN PTV carriers than in noncarriers. Finally, we explored the plasma proteomic signatures of BSN PTV carriers as well as the functional consequences of BSN deletion in human induced pluripotent stem cell-derived hypothalamic neurons. Collectively, our findings implicate degenerative processes in synaptic function in the etiology of adult-onset obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Hepatopatías , Adulto , Humanos , Diabetes Mellitus Tipo 2/genética , Proteómica , Obesidad/complicaciones , Obesidad/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Proteínas Adaptadoras Transductoras de Señales/genética
9.
Mol Med Rep ; 29(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577934

RESUMEN

Hepatitis B X­interacting protein (HBXIP) is a membrane protein located on the lysosomal surface and encoded by the Lamtor gene. It is expressed by a wide range of tumor types, including breast cancer, esophageal squamous cell carcinoma and hepatocellular carcinoma, and its expression is associated with certain clinicopathological characteristics. In the past decade, research on the oncogenic mechanisms of HBXIP has increased and the function of HBXIP in normal cells has been gradually elucidated. In the present review, the following was discussed: The normal physiological role of the HBXIP carcinogenic mechanism; the clinical significance of high levels of HBXIP expression in different tumors; HBXIP regulation of transcription, post­transcription and post­translation processes in tumors; the role of HBXIP in improving the antioxidant capacity of tumor cells; the inhibition of ferroptosis of tumor cells and regulating the metabolic reprogramming of tumor cells; and the role of HBXIP in promoting the malignant progression of tumors. In conclusion, the present review summarized the existing knowledge of HBXIP, established its carcinogenic mechanism and discussed future related research on HBXIP.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Oncogénicas , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias Hepáticas/genética , Proteínas Oncogénicas/metabolismo
10.
FASEB J ; 38(7): e23589, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572594

RESUMEN

Breast cancer antiestrogen resistance 4 (BCAR4) has been suggested that can modulate cell behavior, resulting in tumorigenesis and chemoresistance. However, the underlying mechanisms of BCAR4 in trastuzumab resistance (TR) is still elusive. Here, we explored the function and the underlying mechanism of BCAR4 involving in TR. We found that BCAR4 is significantly upregulated in trastuzumab-resistant BC cells. Knockdown of BCAR4 could sensitize the BC cells to trastuzumab and suppress epithelial-mesenchymal transition (EMT). Mechanically, BCAR4 promotes yes-associated protein 1 (YAP1) expression by competitively sponging miR-665, to activated TGF-ß signaling. Reciprocally, YAP1 could occupy the BCAR4 promoter to enhance its transcription, suggesting that there exists a positive feedback regulation between YAP1 and BCAR4. Targeting the BCAR4/miR-665/YAP1 axis may provide a novel insight of therapeutic approaches for TR in BC.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , MicroARNs/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica
11.
BMC Cancer ; 24(1): 402, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561760

RESUMEN

BACKGROUND: Among the most common forms of cancer worldwide, breast cancer posed a serious threat to women. Recent research revealed a lack of oxygen, known as hypoxia, was crucial in forming breast cancer. This research aimed to create a robust signature with hypoxia-related genes to predict the prognosis of breast cancer patients. The function of hypoxia genes was further studied through cell line experiments. MATERIALS AND METHODS: In the bioinformatic part, transcriptome and clinical information of breast cancer were obtained from The Cancer Genome Atlas(TCGA). Hypoxia-related genes were downloaded from the Genecards Platform. Differentially expressed hypoxia-related genes (DEHRGs) were identified. The TCGA filtered data was evenly split, ensuring a 1:1 distribution between the training and testing sets. Prognostic-related DEHRGs were identified through Cox regression. The signature was established through the training set. Then, it was validated using the test set and external validation set GSE131769 from Gene Expression Omnibus (GEO). The nomogram was created by incorporating the signature and clinicopathological characteristics. The predictive value of the nomogram was evaluated by C-index and receiver operating characteristiccurve. Immune microenvironment and mutation burden were also examined. In the experiment part, the function of the two most significant hypoxia-related genes were further explored by cell-line experiments. RESULTS: In the bioinformatic part, 141 up-regulated and 157 down-regulated DEHRGs were screened out. A prognostic signature was constructed containing nine hypoxia genes (ALOX15B, CA9, CD24, CHEK1, FOXM1, HOTAIR, KCNJ11, NEDD9, PSME2) in the training set. Low-risk patients exhibited a much more favorable prognosis than higher-risk ones (P < 0.001). The signature was double-validated in the test set and GSE131769 (P = 0.006 and P = 0.001). The nomogram showed excellent predictive value with 1-year OS AUC: 0.788, 3-year OS AUC: 0.783, and 5-year OS AUC: 0.817. Patients in the high-risk group had a higher tumor mutation burden when compared to the low-risk group. In the experiment part, the down-regulation of PSME2 inhibited cell growth ability and clone formation capability of breast cancer cells, while the down-regulation of KCNJ11 did not have any functions. CONCLUSION: Based on 9 DEHRGs, a reliable signature was established through the bioinformatic method. It could accurately predict the prognosis of breast cancer patients. Cell line experiment indicated that PSME2 played a protective role. Summarily, we provided a new insight to predict the prognosis of breast cancer by hypoxia-related genes.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Pronóstico , Nomogramas , Hipoxia/genética , Oxígeno , Microambiente Tumoral/genética , Proteínas Adaptadoras Transductoras de Señales , Complejo de la Endopetidasa Proteasomal
12.
J Exp Med ; 221(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38587494

RESUMEN

Jennifer S. Michaelson, Chief Scientific Officer at Cullinan Oncology, and Patrick A. Baeuerle, scientific advisor to Cullinan Oncology and honorary professor in immunology at Ludwig Maximilians University Munich, discuss the use of CD19-specific T cell-engaging antibody therapies (TCEs) as therapeutics for autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Humanos , Enfermedades Autoinmunes/terapia , Proteínas Adaptadoras Transductoras de Señales , Antígenos CD19 , Linfocitos T
13.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557488

RESUMEN

While breast cancer 2 (BRCA2) loss of heterozygosity (LOH) promotes cancer initiation, it can also induce death in nontransformed cells. In contrast, mismatch repair gene mutL homolog 1 (MLH1) is a tumor-suppressor gene that protects cells from cancer development through repairing mismatched base pairs during DNA mismatch repair (MMR). Sengodan et al., in this issue of the JCI, reveal an interplay between the 2 genes: MLH1 promoted the survival of BRCA2-deficient cells independently of its MMR function. MLH1 protected replication forks from degradation, while also resolving R-loops, thereby reducing genomic instability. Moreover, MLH1 expression was regulated directly by estrogen, shedding light into the hormone-responsive nature of many BRCA2 mutant breast cancers. These results provide important insight into the genetics that drive the initiation of BRCA2-mutated breast cancers.


Asunto(s)
Neoplasias de la Mama , Homólogo 1 de la Proteína MutL , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Inestabilidad Genómica , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo
14.
Viral Immunol ; 37(3): 159-166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588555

RESUMEN

The high global prevalence of hepatitis B and hepatitis C and the poor prognosis of hepatitis B and hepatitis C-associated hepatocellular carcinoma (HCC), necessitates the early diagnosis and treatment of the disease. Recent studies show that cell-to-cell communication via extracellular vesicles (EVs) is involved in the HCC progression. The objective of the following study was to explore the role of EVs in the progression of viral-induced HCC and investigate their potential for the early diagnosis of cancer. First, the mRNA derived from EVs of HCC patients was compared to the mRNA derived from EVs from the healthy controls. Expression analysis of ANGPTL3, SH3BGRL3, and IFITM3 genes from the EVs was done. Afterward, to confirm whether hepatocytes can uptake EVs, HuH7 cells were exposed to EVs, and the expression analysis of downstream target genes (AKT, TNF-α, and MMP-9) in Huh7 cells was done. Transcriptional analysis showed that in the EVs from HCC patients, the expression levels of ANGPTL3, SH3BGRL3, and IFITM3 were significantly increased by 2.62-, 4.3-, and 9.03-folds, respectively. The downstream targets, AKT, TNF-α, and MMP-9, also showed a considerable change of 4.1-, 1.46-, and 5.05-folds, respectively, in Huh7 cells exposed to HCC EVs. In conclusion, the following study corroborates the role of EVs in HCC progression. Furthermore, the significant alteration in mRNA levels of the selected genes demonstrates their potential to be used as possible biomarkers for the early diagnosis of HCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma Hepatocelular , Vesículas Extracelulares , Hepatitis B , Hepatitis C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-akt , Factor de Necrosis Tumoral alfa/metabolismo , Hepatitis C/genética , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , ARN Mensajero/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína 3 Similar a la Angiopoyetina
15.
Biochem Pharmacol ; 223: 116197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583810

RESUMEN

Brusatol (Bru), a main extract from traditional Chinese medicine Brucea javanica, has been reported to exist antitumor effect in many tumors including melanoma. However, the underlying mechanism in its anti-melanoma effect still need further exploration. Here, we reported that the protein expression of KLF4 in melanoma cells were significantly downregulated in response to brusatol treatment. Overexpression of KLF4 suppressed brusatol-induced melanoma cell apoptosis; while knockdown of KLF4 enhanced antitumor effects of brusatol on melanoma cells not only in vitro but also in vivo. Further studies on the mechanism revealed that KLF4 bound to the promoter of NCK2 directly and facilitated NCK2 transcription, which suppressed the antitumor effect of brusatol on melanoma. Furthermore, our findings showed that miR-150-3p was dramatically upregulated under brusatol treatment which resulted in the downregulation of KLF4. Our results suggested that the miR-150-3p/KLF4/NCK2 axis might play an important role in the antitumour effects of brusatol in melanoma.


Asunto(s)
Melanoma , MicroARNs , Cuassinas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Cuassinas/farmacología , Apoptosis , MicroARNs/genética , MicroARNs/farmacología , Proteínas Oncogénicas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
17.
J Clin Invest ; 134(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618954

RESUMEN

Cell and antibody therapies directed against surface molecules on B cells, e.g., CD19-targeting chimeric antigen receptor T cells (CD19 CAR-T), are now standard for patients with chemorefractory B cell acute lymphoblastic leukemias and other B cell malignancies. However, early relapse rates remain high. In this issue of the JCI, Aminov, Giricz, and colleagues revealed that leukemia cells resisting CD19-targeted therapy had reduced CD19 but also low CD22 expression and were sensitive to Bruton's tyrosine kinase and/or MEK inhibition. Overall, their observations support the evolution of resistance following a Lamarckian model: the oncotherapy directly elicits adaptive, resistance-conferring reconfigurations, which are then inherited by daughter cells as epigenetic changes. The findings prompt reflection also on the broader role of epigenetics in decoupling of replication from lineage differentiation activation by the B cell lineage master transcription factor hub. Such oncogenesis and resistance mechanisms, being predictable and epigenetic, offer practical opportunities for intervention, potentially non-cross-resistant and safe vis-à-vis present cytotoxic and CAR-T treatments.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Proteínas Adaptadoras Transductoras de Señales , Agammaglobulinemia Tirosina Quinasa , Antígenos CD19 , Linfocitos B
18.
BMC Musculoskelet Disord ; 25(1): 291, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622662

RESUMEN

OBJECTIVES: The aim of this study was to explore the long non-coding RNA (lncRNA) expression profiles in serum of patients with ankylosing spondylitis (AS). The role of these lncRNAs in this complex autoimmune situation needs to be evaluated. METHODS: We used high-throughput whole-transcriptome sequencing to generate sequencing data from three patients with AS and three normal controls (NC). Then, we performed bioinformatics analyses to identify the functional and biological processes associated with differentially expressed lncRNAs (DElncRNAs). We confirmed the validity of our RNA-seq data by assessing the expression of eight lncRNAs via quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 20 AS and 20 NC samples. We measured the correlation between the expression levels of lncRNAs and patient clinical index values using the Spearman correlation test. RESULTS: We identified 72 significantly upregulated and 73 significantly downregulated lncRNAs in AS patients compared to NC. qRT-PCR was performed to validate the expression of selected DElncRNAs; the results demonstrated that the expression levels of MALAT1:24, NBR2:9, lnc-DLK1-35:13, lnc-LARP1-1:1, lnc-AIPL1-1:7, and lnc-SLC12A7-1:16 were consistent with the sequencing analysis results. Enrichment analysis showed that DElncRNAs mainly participated in the immune and inflammatory responses pathways, such as regulation of protein ubiquitination, major histocompatibility complex class I-mediated antigen processing and presentation, MAPkinase activation, and interleukin-17 signaling pathways. In addition, a competing endogenous RNA network was constructed to determine the interaction among the lncRNAs, microRNAs, and mRNAs based on the confirmed lncRNAs (MALAT1:24 and NBR2:9). We further found the expression of MALAT1:24 and NBR2:9 to be positively correlated with disease severity. CONCLUSION: Taken together, our study presents a comprehensive overview of lncRNAs in the serum of AS patients, thereby contributing novel perspectives on the underlying pathogenic mechanisms of this condition. In addition, our study predicted MALAT1 has the potential to be deeply involved in the pathogenesis of AS.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Espondilitis Anquilosante , Humanos , ARN Largo no Codificante/genética , Perfilación de la Expresión Génica/métodos , Espondilitis Anquilosante/genética , MicroARNs/metabolismo , Biología Computacional/métodos , Redes Reguladoras de Genes , Proteínas Adaptadoras Transductoras de Señales/genética , 60528
19.
Syst Biol Reprod Med ; 70(1): 101-112, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38630598

RESUMEN

MDC1 (Mediator of DNA damage Checkpoint protein 1) functions to facilitate the localization of numerous DNA damage response (DDR) components to DNA double-strand break sites. MDC1 is an integral component in preserving genomic stability and appropriate DDR regulation. There haven't been systematic investigations of MDC1 mutations that induce cancer and genomic instability. Variations in nsSNPs have the potential to modify the protein chemistry and their function. Describing functional SNPs in disease-associated genes presents a significant conundrum for investigators, it is possible to assess potential functional SNPs before conducting larger population examinations. Multiple sequences and structure-based bioinformatics strategies were implemented in the current in-silico investigation to discern potential nsSNPs of the MDC1 genes. The nsSNPs were identified with SIFT, SNAP2, Align GVGD, PolyPhen-2, and PANTHER, and their stability was determined with MUpro. The conservation, solvent accessibility, and structural effects of the mutations were identified with ConSurf, NetSurfP-2.0, and SAAFEC-SEQ respectively. Cancer-related analysis of the nsSNPs was conducted using cBioPortal and TCGA web servers. The present study appraised five nsSNPs (P1426T, P69S, P194R, P203L, and H131Y) as probably mutilating due to their existence in highly conserved regions and propensity to deplete protein stability. The nsSNPs P194R, P203L, and H131Y were concluded as deleterious and possibly damaging from the 5 prediction tools. The functional nsSNP P194R mutation is associated with skin cutaneous melanoma while no significant records were found for other nsSNPs. The present study concludes that the highly deleterious P194R mutations can potentially induce genomic instability and contribute to various cancers' pathogenesis. Developing drugs targeting these mutations can undoubtedly be advantageous in large population-based studies, particularly in the development of precision medicine.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Polimorfismo de Nucleótido Simple , Mutación , Biología Computacional , Inestabilidad Genómica , Proteínas de Ciclo Celular , Proteínas Adaptadoras Transductoras de Señales
20.
World J Urol ; 42(1): 216, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581575

RESUMEN

BACKGROUND: Previous research has focused on the association between immune cells and the development of benign prostatic hyperplasia (BPH). Nevertheless, the causal relationships in this context remain uncertain. METHODS: This study employed a comprehensive and systematic two-sample Mendelian randomization (MR) analysis to determine the causal relationships between immunophenotypes and BPH. We examined the causal associations between 731 immunophenotypes and the risk of BPH by utilizing publicly available genetic data. Integrated sensitivity analyses were performed to validate the robustness, assess heterogeneity, and examine horizontal pleiotropy in the results. RESULTS: We discovered that 38 immunophenotypes have a causal effect on BPH. Subsequently, four of these immunophenotypes underwent verification using weighted median, weighted mode, and inverse variance weighted (IVW) algorithms, which included CD19 on CD24+ CD27+, CD19 on naive-mature B cell, HLA DR on CD14- CD16+ and HLA DR+ T cell%lymphocyte. Furthermore, BPH exhibited a significant association with three immunophenotypes: CD19 on IgD+ CD38dim (ß = -0.152, 95% CI = 0.746-0.989, P = 0.034), CD19 on IgD+ (ß = -0.167, 95% CI = 0.737-0.973, P = 0.019), and CD19 on naive-mature B cell (ß = -0.166, 95% CI = 0.737-0.972, P = 0.018). CONCLUSIONS: Our study provides valuable insights for future clinical investigations by establishing a significant association between immune cells and BPH.


Asunto(s)
Hiperplasia Prostática , Humanos , Masculino , Hiperplasia Prostática/genética , Análisis de la Aleatorización Mendeliana , Proteínas Adaptadoras Transductoras de Señales , Algoritmos , Antígenos HLA-DR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...